Th2 related markers in milk allergic inflammatory mice model, versus OVA

Citations of this article
Mendeley users who have this article in their library.


Experimental studies on allergic asthma are limited by the high cost of the administrated allergens. In this study we tested the allergic potency of low fat milk as a cheap substitute to the widely used standard allergen, ovalbumin (OVA). BALB/c female mice (4 weeks old) were sensitized intraperitoneally with low fat milk/or OVA followed by intranasal challenge with the two allergens on days 28 and 29. At day 31, serum, bronchoalveolar lavage fluid (BALF), and lungs were harvested. Mice of the low fat milk model showed infiltration of eosinophils, macrophages, lymphocytes, and neutrophils in BALF comparable to that of the OVA model. Both allergic protocols led to the production of similar numbers of Th2 cells and induced comparable expression of Th2 cytokine (IL-13) as evident by real time PCR for IL-13 and GATA3 (Th2 transcription factor) and confirmed by immunofluorescence for Th2 surface markers (T1/ST2). In addition, both mouse models had similar elevated levels of allergen specific antibody, IgG1 and IgE. Notably, HE, PAS, and LUNA stained lung sections from low fat milk treated mice had higher average pathological scores as compared to OVA treated mice. In conclusion, this study suggests that the low fat milk-induced inflammation showed hallmarks of allergic airway inflammatory model such as eosinophilic influx in BALF, increased numbers of Th2 cells, augmented expression of IL-13, elevated levels of circulatory IgG1 and IgE, signs of robust pulmonary inflammation, and most importantly it is a cheap and promising model for studying acute allergic airway inflammation and acute asthma.




El-housseiny, L., Ibrahim, M. K., & Sellinger, R. (2017). Th2 related markers in milk allergic inflammatory mice model, versus OVA. Journal of Genetic Engineering and Biotechnology, 15(2), 453–461.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free