Torsion theories and radicals in normal categories

17Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

We introduce a relativized notion of (semi)normalcy for categories that come equipped with a proper stable factorization system, and we use radicals (in the sense of module theory) and normal closure operators in order to study torsion theories in such categories. Our results generalize and complement recent studies in the realm of semi-abelian and, in part, homological categories. In particular, we characterize both, torsion-free and torsion classes, in terms of their closure under extensions. We pay particular attention to the homological and, for our purposes more importantly, normal categories of topological algebra, such as the category of topological groups. But our applications go far beyond the realm of these types of categories, as they include, for example, the normal, but non-homological category of pointed topological spaces, which is in fact a rich supplier for radicals of topological groups. © 2005 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Clementino, M. M., Dikranjan, D., & Tholen, W. (2006). Torsion theories and radicals in normal categories. Journal of Algebra, 305(1), 98–129. https://doi.org/10.1016/j.jalgebra.2005.09.030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free