Towards an anti-disease malaria vaccine

  • Lennartz F
  • Lavstsen T
  • Higgins M
Citations of this article
Mendeley users who have this article in their library.


Human infective parasites, such as those that cause malaria, are highly adapted to evade clearance by the immune system. In situations where they must maintain prolonged interactions with molecules of their host, they often use parasite surface protein families. These families are highly diverse to prevent immune recognition, and yet, to promote parasite survival, their members must retain the ability to interact with specific human receptors. One of the best understood of the parasite surface protein families is the PfEMP1 proteins of Plasmodium falciparum . These molecules cause infected erythrocytes to adhere to human receptors found on blood vessel and tissue surfaces. This protects the parasite within from clearance by the spleen and also causes symptoms of severe malaria. The PfEMP1 are exposed to the immune system during infection and are therefore excellent vaccine candidates for use in an approach to prevent severe disease. A key question, however, is whether their extensive diversity precludes them from forming components of the malaria vaccines of the future? * CIDR, : cysteine rich interdomain region; CSP, : circumsporozoite protein; DBL, : Duffy binding like; EPCR, : endothelial protein C receptor; ICAM-1, : intracellular adhesion molecule 1; PfEMP1, : P. falciparum erythrocyte membrane protein 1.




Lennartz, F., Lavstsen, T., & Higgins, M. K. (2017). Towards an anti-disease malaria vaccine. Emerging Topics in Life Sciences, 1(6), 539–545.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free