Transcriptional profiling of root-knot nematode induced feeding sites in cowpea (Vigna unguiculata L. Walp.) using a soybean genome array

23Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

Background: The locus Rk confers resistance against several species of root-knot nematodes (Meloidogyne spp., RKN) in cowpea (Vigna unguiculata). Based on histological and reactive oxygen species (ROS) profiles, Rk confers a delayed but strong resistance mechanism without a hypersensitive reaction-mediated cell death process, which allows nematode development but blocks reproduction.Results: Responses to M. incognita infection in roots of resistant genotype CB46 and a susceptible near-isogenic line (null-Rk) were investigated using a soybean Affymetrix GeneChip expression array at 3 and 9 days post-inoculation (dpi). At 9 dpi 552 genes were differentially expressed in incompatible interactions (infected resistant tissue compared with non-infected resistant tissue) and 1,060 genes were differentially expressed in compatible interactions (infected susceptible tissue compared with non-infected susceptible tissue). At 3 dpi the differentially expressed genes were 746 for the incompatible and 623 for the compatible interactions. When expression between infected resistant and susceptible genotypes was compared, 638 and 197 genes were differentially expressed at 9 and 3 dpi, respectively.Conclusions: In comparing the differentially expressed genes in response to nematode infection, a greater number and proportion of genes were down-regulated in the resistant than in the susceptible genotype, whereas more genes were up-regulated in the susceptible than in the resistant genotype. Gene ontology based functional categorization revealed that the typical defense response was partially suppressed in resistant roots, even at 9 dpi, allowing nematode juvenile development. Differences in ROS concentrations, induction of toxins and other defense related genes seem to play a role in this unique resistance mechanism. © 2010 Das et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Das, S., Ehlers, J. D., Close, T. J., & Roberts, P. A. (2010). Transcriptional profiling of root-knot nematode induced feeding sites in cowpea (Vigna unguiculata L. Walp.) using a soybean genome array. BMC Genomics, 11(1). https://doi.org/10.1186/1471-2164-11-480

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free