Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors

17Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

Background: Several studies have focused on cold tolerance in multiple regulated levels. However, a genome-scale molecular analysis of the regulated network under the control of transcription factors (TFs) is still lacking, especially for trees. To comprehensively identify the TFs that regulate cold stress response in the paper mulberry and understand their regulatory interactions, transcriptomic data was used to assess changes in gene expression induced by exposure to cold. Results: Results indicated that 794 TFs, belonging to 47 families and comprising more than 59% of the total TFs of this plant, were involved in the cold stress response. They were clustered into three groups, namely early, intermediate and late responsive groups which contained 95, 550 and 149 TFs, respectively. Among of these differentially expressed TFs, one bHLH, two ERFs and three CAMTAs were considered to be the key TFs functioning in the primary signal transduction. After that, at the intermediate stage of cold stress, there were mainly two biological processes that were regulated by TFs, namely cold stress resistance (including 5 bHLH, 14 ERFs, one HSF, 4 MYBs, 3 NACs, 11 WRKYs and so on) and growth and development of lateral organ or apical meristem (including ARR-B, B3, 5 bHLHs, 2 C2H2, 4 CO-like, 2 ERF, 3 HD-ZIP, 3 YABBYs, G2-like, GATA, GRAS and TCP). In late responsive group, 3 ARR-B, C3H, 6 CO-like, 2 G2-like, 2 HSFs, 2 NACs and TCP. Most of them presented the up-regulated expression at 12 or 24 hours after cold stress implied their important roles for the new growth homeostasis under cold stress. Conclusions: Our study identified the key TFs that function in the regulatory cascades mediating the activation of downstream genes during cold tress tolerance in the paper mulberry. Based on the analysis, we found that the AP2/ERF, bHLH, MYB, NAC and WRKY families might play the central and significant roles during cold stress response in the paper mulberry just as in other species. Meanwhile, many other TF families previously reported as involving in regulation of growth and development, including ARF, DBB, G2-like, GRF, GRAS, LBD, WOX and YAABY exhibited their important potential function in growth regulation under cold stress.

Cite

CITATION STYLE

APA

Peng, X., Wu, Q., Teng, L., Tang, F., Pi, Z., & Shen, S. (2015). Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors. BMC Plant Biology, 15(1). https://doi.org/10.1186/s12870-015-0489-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free