An Ultrasonic Caliper Device for Measuring Acoustic Nonlinearity

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

In medical and industrial ultrasound, it is often necessary to measure the acoustic properties of a material. A specific medical application requires measurements of sound speed, attenuation, and nonlinearity to characterize livers being evaluated for transplantation. For this application, a transmission-mode caliper device is proposed in which both transmit and receive transducers are directly coupled to a test sample, the propagation distance is measured with an indicator gage, and receive waveforms are recorded for analysis. In this configuration, accurate measurements of nonlinearity present particular challenges: diffraction effects can be considerable while nonlinear distortions over short distances typically remain small. To enable simple estimates of the nonlinearity coeffcient from a quasi-linear approximation to the lossless Burgers' equation, the calipers utilize a large transmitter and plane waves are measured at distances of 15-50 mm. Waves at 667 kHz and pressures between 0.1 and 1 MPa were generated and measured in water at different distances; the nonlinearity coeffcient of water was estimated from these measurements with a variability of approximately 10%. Ongoing efforts seek to test caliper performance in other media and improve accuracy via additional transducer calibrations.

Cite

CITATION STYLE

APA

Hunter, C., Sapozhnikov, O. A., Maxwell, A. D., Khokhlova, V. A., Wang, Y. N., Macconaghy, B., & Kreider, W. (2016). An Ultrasonic Caliper Device for Measuring Acoustic Nonlinearity. In Physics Procedia (Vol. 87, pp. 93–98). Elsevier B.V. https://doi.org/10.1016/j.phpro.2016.12.015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free