Uncertainty principles for orthonormal sequences

24Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

The aim of this paper is to provide complementary quantitative extensions of two results of H.S. Shapiro on the time-frequency concentration of orthonormal sequences in L2 (R). More precisely, Shapiro proved that if the elements of an orthonormal sequence and their Fourier transforms are all pointwise bounded by a fixed function in L2 (R) then the sequence is finite. In a related result, Shapiro also proved that if the elements of an orthonormal sequence and their Fourier transforms have uniformly bounded means and dispersions then the sequence is finite. This paper gives quantitative bounds on the size of the finite orthonormal sequences in Shapiro's uncertainty principles. The bounds are obtained by using prolate spheroïdal wave functions and combinatorial estimates on the number of elements in a spherical code. Extensions for Riesz bases and different measures of time-frequency concentration are also given. © 2006.

Cite

CITATION STYLE

APA

Jaming, P., & Powell, A. M. (2007). Uncertainty principles for orthonormal sequences. Journal of Functional Analysis, 243(2), 611–630. https://doi.org/10.1016/j.jfa.2006.09.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free