An upgraded bio-oil produced from sugarcane bagasse via the use of HZSM-5 zeolite catalyst

Citations of this article
Mendeley users who have this article in their library.


The pyrolysis upgrading of bio-oil from sugarcane bagasse (SB) using ZSM-5 zeolite catalyst was carried out in a fixed bed reactor to determine the effects of heating rate, temperature, and catalyst/biomass ratio on yield of bio-oil and their chemical compositions. Proximate analysis indicated that SB has 13.2% moisture content. The ultimate analysis carried out established that the percentage of carbon content is higher (48.2%) than oxygen content (44%) while the fibre content analysis showed 26.4% lignin, 33.3% cellulose, 30.1% hemicellulose. The heating rate, temperature and catalyst/biomass ratio were varied in the range of 10–50 °C/min, 400–600 °C and 0.05–0.25 respectively. The non-catalytic pyrolysis gave the maximum percentage yield (45.67 wt%) of bio-oil at a pyrolysis temperature of 600 °C, heating rate of 50 °C/min, sweeping gas flow rate of 40 mL/min and the catalytic pyrolysis gave 40.83 wt% of bio-oil at the same conditions. The FT-IR spectra showed that the non-catalytic bio-oil is dominated by oxygenated compounds (acids, ketones, aldehydes, alcohols), while the catalytic bio-oil had preponderances of desirable compounds (alkanes, alkenes, aromatics, phenols). The chemical composition of the bio-oils was analyzed using GC–MS, which revealed that the quality of the bio-oil has been improved using HZSM-5 catalyzed pyrolysis.




Rabiu, S. D., Auta, M., & Kovo, A. S. (2018). An upgraded bio-oil produced from sugarcane bagasse via the use of HZSM-5 zeolite catalyst. Egyptian Journal of Petroleum, 27(4), 589–594.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free