Using Multiple Seasonal Holt-Winters Exponential Smoothing to Predict Cloud Resource Provisioning

  • A. A
N/ACitations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

—Elasticity is one of the key features of cloud computing that attracts many SaaS providers to minimize their services' cost. Cost is minimized by automatically provision and release computational resources depend on actual computational needs. However, delay of starting up new virtual resources can cause Service Level Agreement violation. Consequently, predicting cloud resources provisioning gains a lot of attention to scale computational resources in advance. However, most of current approaches do not consider multi-seasonality in cloud workloads. This paper proposes cloud resource provisioning prediction algorithm based on Holt-Winters exponential smoothing method. The proposed algorithm extends Holt-Winters exponential smoothing method to model cloud workload with multi-seasonal cycles. Prediction accuracy of the proposed algorithm has been improved by employing Artificial Bee Colony algorithm to optimize its parameters. Performance of the proposed algorithm has been evaluated and compared with double and triple exponential smoothing methods. Our results have shown that the proposed algorithm outperforms other methods.

Cite

CITATION STYLE

APA

A., A. (2016). Using Multiple Seasonal Holt-Winters Exponential Smoothing to Predict Cloud Resource Provisioning. International Journal of Advanced Computer Science and Applications, 7(11). https://doi.org/10.14569/IJACSA.2016.071113

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free