Variational formulation of a damped Dirichlet impulsive problem

64Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

In this letter we introduce the concept of a weak solution for a damped linear equation with Dirichlet boundary conditions and impulses. We use the classical Lax-Milgram Theorem to reveal the variational structure of the problem and get the existence and uniqueness of weak solutions as critical points. This will allow us in the future to deal with the corresponding nonlinear problems and look for solutions as critical points of weakly lower semicontinuous functionals. © 2010 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Nieto, J. J. (2010). Variational formulation of a damped Dirichlet impulsive problem. Applied Mathematics Letters, 23(8), 940–942. https://doi.org/10.1016/j.aml.2010.04.015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free