Vibrational spectroscopy of excited electronic states in carotenoids in vivo. Picosecond time-resolved resonance Raman scattering

15Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The vibrational spectroscopy and population dynamics of excited singlet (2(1)Ag), excited triplet (3B u), and the ground (1Ag) electronic states of carotenoids in chromatophores of Chromatium vinosum (mainly spirilloxanthin and rhodopin) and of the same carotenoids in benzene solutions are examined by picosecond time-resolved resonance Raman scattering. Coherent Stokes Raman scattering from the ground states of carotenoids in chromatophores also is observed. Resonance Raman spectra of in vitro rhodopin and spirilloxanthin when compared with in vivo data demonstrate that scattering from spirilloxanthin dominates the in vivo spectrum. Comparisons of the time-dependent intensities of 2(1)Ag and 1Ag resonance Raman bands from both in vitro and in vivo carotenoids suggest that vibrationally excited levels in 1Ag are populated directly by the decay of the 2(1)Ag state and that these levels relax into a thermalized distribution in less than 50 ps. The appearance of asymmetrically broadened, ground-state resonance Raman bands supports this conclusion. Formation of the 3Bu state is observed for carotenoids in chromatophores, but not for in vitro spirilloxanthin indicating that the 3Bu state is formed by fission processes originating from the spatial organization of pigments within chromatophores. The rate at which the intensities of 2(1)Ag resonance Raman bands decay is faster for the carotenoids in vivo than for those in vitro thereby indicating that additional relaxation channels (e.g., energy transfer to bacteriochlorophylls) are present in the chromatophore. The similarity of the in vivo and in vitro 2(1)Ag resonance Raman spectra shows that no significant modifications in the vibronic coupling has been caused by the chromatophore environment. © 1991, The Biophysical Society. All rights reserved.

Cite

CITATION STYLE

APA

Hayashi, H., Noguchi, T., Tasumi, M., & Atkinson, G. H. (1991). Vibrational spectroscopy of excited electronic states in carotenoids in vivo. Picosecond time-resolved resonance Raman scattering. Biophysical Journal, 60(1), 252–260. https://doi.org/10.1016/S0006-3495(91)82047-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free