Visualizing multiphysics, fluid-structure interaction phenomena in intracranial aneurysms

4Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

This work presents recent advances in visualizing multi-physics, fluid-structure interaction (FSI) phenomena in cerebral aneurysms. Realistic FSI simulations produce very large and complex data sets, yielding the need for parallel data processing and visualization. Here we present our efforts to develop an interactive visualization tool which enables the visualization of such FSI simulation data. Specifically, we present a ParaView–NekTar interface that couples the ParaView visualization engine with NekTar's parallel libraries, which are employed for the calculation of derived fields in both the fluid and solid domains with spectral accuracy. This interface allows the flexibility of independently choosing the resolution for visualizing both the volume data and the surface data from each of the solid and fluid domains, which significantly facilitates the visualization of complex structures under large deformations. The animation of the fluid and structure data is synchronized in time, while the ParaView–NekTar interface enables the visualization of different fields to be superimposed, e.g. fluid jet and structural stress, to better understand the interactions in this multi-physics environment. Such visualizations are key towards elucidating important biophysical interactions in health and disease, as well as disseminating the insight gained from our simulations and further engaging the medical community in this effort of bringing computational science to the bedside.

Cite

CITATION STYLE

APA

Perdikaris, P., Insley, J. A., Grinberg, L., Yu, Y., Papka, M. E., & Karniadakis, G. E. (2016). Visualizing multiphysics, fluid-structure interaction phenomena in intracranial aneurysms. Parallel Computing, 55, 9–16. https://doi.org/10.1016/j.parco.2015.10.016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free