In vivo tractography of fetal association fibers

24Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

© 2015 Mitter et al. Association fibers connect different cortical areas within the same hemisphere and constitute an essential anatomical substrate for a diverse range of higher cognitive functions. So far a comprehensive description of the prenatal in vivo morphology of these functionally important pathways is lacking. In the present study, diffusion tensor imaging (DTI) and tractography were used to visualize major association fiber tracts and the fornix in utero in preselected non-motion degraded DTI datasets of 24 living unsedated fetuses between 20 and 34 gestational weeks (GW). The uncinate fasciculus and inferior fronto-occipital fasciculus were depicted as early as 20 GW, while in vivo 3D visualization of the inferior longitudinal fasciculus, cingulum and fornix was successful in older fetuses during the third trimester. Provided optimal scanning conditions, in utero DTI and tractography have the potential to provide a more accurate anatomical definition of developing neuronal networks in the human fetal brain. Knowledge about the normal prenatal 3D association tract morphology may serve as reference for their assessment in common developmental diseases.

Cite

CITATION STYLE

APA

Mitter, C., Prayer, D., Brugger, P. C., Weber, M., & Kasprian, G. (2015). In vivo tractography of fetal association fibers. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0119536

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free