On the vulnerability of face verification systems to hill-climbing attacks

Citations of this article
Mendeley users who have this article in their library.
Get full text


In this paper, we use a hill-climbing attack algorithm based on Bayesian adaption to test the vulnerability of two face recognition systems to indirect attacks. The attacking technique uses the scores provided by the matcher to adapt a global distribution computed from an independent set of users, to the local specificities of the client being attacked. The proposed attack is evaluated on an eigenface-based and a parts-based face verification system using the XM2VTS database. Experimental results demonstrate that the hill-climbing algorithm is very efficient and is able to bypass over 85% of the attacked accounts (for both face recognition systems). The security flaws of the analyzed systems are pointed out and possible countermeasures to avoid them are also proposed. © 2009 Elsevier Ltd. All rights reserved.




Galbally, J., McCool, C., Fierrez, J., Marcel, S., & Ortega-Garcia, J. (2010). On the vulnerability of face verification systems to hill-climbing attacks. Pattern Recognition, 43(3), 1027–1038. https://doi.org/10.1016/j.patcog.2009.08.022

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free