Weighting Primary Care Patient Panel Size: A Novel Electronic Health Record-Derived Measure Using Machine Learning

  • Rajkomar A
  • Yim J
  • Grumbach K
  • et al.
N/ACitations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

BACKGROUND Characterizing patient complexity using granular electronic health record (EHR) data regularly available to health systems is necessary to optimize primary care processes at scale. OBJECTIVE To characterize the utilization patterns of primary care patients and create weighted panel sizes for providers based on work required to care for patients with different patterns. METHODS We used EHR data over a 2-year period from patients empaneled to primary care clinicians in a single academic health system, including their in-person encounter history and virtual encounters such as telephonic visits, electronic messaging, and care coordination with specialists. Using a combination of decision rules and k-means clustering, we identified clusters of patients with similar health care system activity. Phenotypes with basic demographic information were used to predict future health care utilization using log-linear models. Phenotypes were also used to calculate weighted panel sizes. RESULTS We identified 7 primary care utilization phenotypes, which were characterized by various combinations of primary care and specialty usage and were deemed clinically distinct by primary care physicians. These phenotypes, combined with age-sex and primary payer variables, predicted future primary care utilization with R2 of .394 and were used to create weighted panel sizes. CONCLUSIONS Individual patients' health care utilization may be useful for classifying patients by primary care work effort and for predicting future primary care usage.

Cite

CITATION STYLE

APA

Rajkomar, A., Yim, J. W. L., Grumbach, K., & Parekh, A. (2016). Weighting Primary Care Patient Panel Size: A Novel Electronic Health Record-Derived Measure Using Machine Learning. JMIR Medical Informatics, 4(4), e29. https://doi.org/10.2196/medinform.6530

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free