Characteristic K X-ray production in heavy ion-atom collisions in solids

  • Lennard W
  • Mitchell I
  • 2

    Readers

    Mendeley users who have this article in their library.
  • 12

    Citations

    Citations of this article.

Abstract

We report on some of the factors influencing the characteristic K X-ray yields which result from heavy (Z1∼ 35) ion bombardment of similar atomic number targets (Z2). All targets are in the form of narrow, shallow distributions implanted into solid hosts. At the beam energies used, viz. 2 to 4 MeV, K-vacancy production is presumed to arise from a collision sequence, the first producing a projectile L-shell vacancy in a projectile-host atom encounter and the second, a projectile-target atom encounter, transferring the L-vacancy via transient MO orbitals to the K-shell of one of the heavy collision partners. Evidence for a two-step process is presented. First, Kr K X-ray excitation functions measured for Kr++bombardment of Si(Kr) and Be(Kr) targets are identical in shape. The different magnitudes are attributed to different efficiencies for Kr 2p-shell ionization in KrSi and KrBe collisions. Second, systematic variation of the host material for fixed (Z1, Z2) demonstrates clearly the role of level matching effects between the projectile-2p and host-1s energy levels in creating projectile 2p-vacancies. © 1976.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • W. N. Lennard

  • I. V. Mitchell

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free