Characterization of cyclic plastic bending of austenitic AISI 304 stainless steel

  • Bayoumi M
  • Abd El Latif A
  • 1


    Mendeley users who have this article in their library.
  • 5


    Citations of this article.


Steels used in chemical, nuclear and power industries are usually subjected to repeated loads that may induce significant inelastic deformations. Successful assessment of a component life places a great demand on understanding of material behaviour under strain histories involving cyclic plasticity under bending conditions. This work is concerned with an experimental study of low-cycle fatigue behaviour under both load and deflection controlled conditions. The tests were conducted on AISI 304 stainless steels with the objective of determining strain cycling properties under cyclic plastic bending. These properties are characterized by the cyclic stress-strain hysteresis responses obtained. The cyclic bending plasticity behaviour is investigated for beams with circular cross-section at two conditions of the material, under constant strain and under constant stress. Hysteresis loops for five different strain ranges of ±0.4%, ±0.82%, ±1.1%, ±1.33% and ±1.55% were obtained and also for different stress ranges of 730, 800, 870 and 940 MPa. The material exhibits cyclic hardening in its virgin state, the rate of hardening is very rapid at first but diminishes quickly as the stabilized condition is approached. The cyclic hardening for the constant strain condition is higher than the constant load condition. The results also confirm the applicability of the reference stress method for predicting the cyclic moment-curvature curve for beams with circular cross-sections. The observed strain values are higher in the lower strain range and lower in the higher strain. However, the correlation obtained is considered quite satisfactory in view of the nonlinearity of the problem. © 1995.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • M. R. Bayoumi

  • A. K. Abd El Latif

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free