Characterization of the rolB promoter on mikimopine-type pRi1724 T-DNA

21Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Fermi gamma ray space telescope data have pointed towards an excess of gamma rays with a peak around 1-3 GeV in the region surrounding the galactic center. This anomalous excess can be described well by a dark matter candidate having mass in the range 31-40 GeV annihilating into bb pairs with a cross section of (σν)≃(1.4-2.0)×10-26cm3/s. In this work we explore the possibility of having such a dark matter candidate within the framework of a radiative neutrino mass model. The model is a simple extension of the standard model by an additional U(1)Xgauge symmetry where the standard model neutrino masses arise both at tree level as well as radiatively by the anomaly free addition of one singlet fermion NRand two triplet fermions ∑1R, ∑2Rwith suitable Higgs scalars. The spontaneous gauge symmetry breaking is achieved in such a way which results in a residual Z2symmetry hence providing a stable cold dark matter candidate. We show that the singlet fermionic dark matter candidate in our model can give rise to the galactic center gamma ray excess. The parameter space which simultaneously satisfies the constraints on relic density, direct detection scattering as well as collider bounds essentially corresponds to an s-wave resonance where the gauge boson mass mXis approximately twice that of dark matter mass mχ. We also discuss the compatibility of such a light fermion singlet dark matter with light neutrino mass.

Cite

CITATION STYLE

APA

Handayani, N. S. N., Moriuchi, H., Yamakawa, M., Yamashita, I., Yoshida, K., & Tanaka, N. (2005). Characterization of the rolB promoter on mikimopine-type pRi1724 T-DNA. Plant Science, 168(5), 1353–1364. https://doi.org/10.1016/j.physletb.2014.12.023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free