Charged wall growth in channel flow

Citations of this article
Mendeley users who have this article in their library.
Get full text


The primary objective of this communication is to qualitatively describe charged wall growth in channel flow. The reduction of channel flow cross-section is often attributed to microscale suspensions and dissolved minerals which adhere to the flow boundaries (walls). In this analysis, the wall is comprised of an electrically conductive material, capable of carrying a charge. The flowing fluid, containing ions, is also assumed to be capable of carrying a charge. The resulting electrical field can be determined using Gauss' law, which allows the associated electrical force to be computed at the solid-fluid interface. This force can impede or enhance the attachment of suspensions to the wall. Thus, there are two effects that play a role at the charged solid-fluid interface/wall: (1) mechanical shear due to the fluid flow and (2) an electrical force. It is the goal of this communication to develop a relationship that characterizes both contributions and to ascertain how this relationship scales with wall growth. © 2009 Elsevier Ltd. All rights reserved.




Zohdi, T. I. (2010). Charged wall growth in channel flow. International Journal of Engineering Science, 48(1), 15–20.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free