On coupled transversal and axial motions of two beams with a joint

  • Burns J
  • Cliff E
  • Liu Z
 et al. 
  • 4


    Mendeley users who have this article in their library.
  • 4


    Citations of this article.


In this paper we develop and analyze a mathematical model for combined axial and transverse motions of two Euler-Bernoulli beams coupled through a joint composed of two rigid bodies. The motivation for this problem comes from the need to accurately model damping and joints for the next generation of inflatable/rigidizable space structures. We assume Kelvin-Voigt damping in the two beams whose motions are coupled through a joint which includes an internal moment. The resulting equations of motion consist of four, second-order in time, partial differential equations, four second-order ordinary differential equations, and certain compatibility boundary conditions. The system is re-cast as an abstract second-order differential equation in an appropriate Hilbert space, consisting of function spaces describing the distributed beam deflections, and a finite-dimensional space that projects important features at the joint boundary. Semigroup theory is used to prove the system is well posed, and that with positive damping parameters the resulting semigroup is analytic and exponentially stable. The spectrum of the infinitesimal generator is characterized. © 2007 Elsevier Inc. All rights reserved.

Author-supplied keywords

  • Abstract differential equations
  • Mechanics of deformable solids
  • Semigroups and linear evolution equations

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free