Damage accumulation and annealing behavior in high fluence implanted MgZnO

  • Azarov A
  • Hallén A
  • Svensson B
 et al. 
  • 3


    Mendeley users who have this article in their library.
  • 2


    Citations of this article.


Molecular beam epitaxy grown MgxZn1-xO (x ≤ 0.3) layers were implanted at room temperature with 150 keV166Er+ions in a fluence range of 5 × 1015-3 × 1016cm-2. Evolution of ion-induced damage and structural changes were studied by a combination of Rutherford backscattering spectrometry, nuclear reaction analysis and time-of-flight elastic recoil detection analysis. Results show that damage production enhances in both Zn- and O-sublattices with increasing the Mg content in the MgZnO. However, MgZnO as well as pure ZnO exhibits a high degree of dynamic annealing and MgZnO can not be amorphized even at the highest ion fluence used. Annealing of heavily damaged ZnO leads to a strong surface erosion and thinning of the film. Increasing the Mg content suppresses the surface evaporation in high fluence implanted MgZnO but leads to a strong surface decomposition accompanied with a Mg-rich surface layer formation during post-implantation annealing. © 2011 Elsevier B.V. All rights reserved.

Author-supplied keywords

  • Annealing
  • Damage
  • Ion implantation
  • MgZnO

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free