Depth-profiling of implanted 28Si by (α,α) and (α,p0) reactions

Citations of this article
Mendeley users who have this article in their library.
Get full text


Silicon nanocrystals enclosed in thin films (Si quantum dots or Si QDs) are regarded to be the cornerstone of future developments in new memory, photovoltaic and optoelectronic products. One way to synthesize these Si QDs is ion implantation in SiO2layers followed by thermal annealing post-treatment. Depth-profiling of these implanted Si ions can be performed by reactions induced by α-particles on28Si. Indeed, for high incident energy, nuclear levels of32S and31P can be reached, and cross-sections for (α,α) and (α,p0) reactions are more intense. This can help to increase the signal for surface silicon, and therefore make distinguishing more easy between implanted Si and Si coming from the SiO2, even for low fluences. In this work, (α,α) and (α,p0) reactions are applied to study depth distributions of 70 keV28Si+ions implanted in 200 nm SiO2layers with fluences of 1 × 1017and 2 × 1017cm-2. Analysis is performed above ER= 3864 keV to take advantage of resonances in both (α,α) and (α,p0) cross-sections. We show how (α,p0) reactions can complement results provided by resonant backscattering measurements in this complex case. © 2010 Elsevier B.V. All rights reserved.




Demarche, J., Yedji, M., & Terwagne, G. (2010). Depth-profiling of implanted 28Si by (α,α) and (α,p0) reactions. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 268(11–12), 2107–2110.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free