On a doubly nonlinear model for the evolution of damaging in viscoelastic materials

34Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We consider a model describing the evolution of damage in visco-elastic materials, where both the stiffness and the viscosity properties are assumed to degenerate as the damaging is complete. The equation of motion ruling the evolution of macroscopic displacement is hyperbolic. The evolution of the damage parameter is described by a doubly nonlinear parabolic variational inclusion, due to the presence of two maximal monotone graphs involving the phase parameter and its time derivative. Existence of a solution is proved in some subinterval of time in which the damage process is not complete. Uniqueness is established in the case when one of the two monotone graphs is assumed to be Lipschitz continuous. © 2005 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Bonetti, E., Schimperna, G., & Segatti, A. (2005). On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. Journal of Differential Equations, 218(1), 91–116. https://doi.org/10.1016/j.jde.2005.04.015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free