Dynamic changes in small nuclear ribonucleoproteins of heat-stressed and thermotolerant HeLa cells

  • Bond U
  • James T
  • 5


    Mendeley users who have this article in their library.
  • 10


    Citations of this article.


Living organisms when subjected to various forms of environmental stress mount a physiological response to survive the long- and short-term ill- effects of the stress. The stress response may involve selective shut down of non-essential metabolic activities and the repair of macromolecular damage resulting from the stress. Messenger RNA splicing in cultured HeLa cells is one of the processes inhibited by heat stress. Splicing is protected from such inhibition in stress-preconditioned cells that have acquired a tolerant state characterised by increased cell survival and resistance to other environmental stresses. Stress tolerant cells have heat shock proteins (HSPs) that had been induced by the preconditioning process. To examine the biochemical changes induced by stress in the splicing apparatus, we analysed the small nuclear ribonucleoprotein (snRNP) particles associated with spliceosomes in normal, stressed, and stress tolerant cells. We show that (a) the spliceosomal component U4/U5/U6 snRNP particle is disassembled by heat stress into intermediates of splicing assembly, (b) prior induction of stress tolerance protects the structural and functional integrity of snRNPs if cells are subsequently exposed to a severe stress and (c) a novel 65 kDa protein is associated with small nuclear ribonucleoprotein particles in stress tolerant cells. (C) 2000 Elsevier Science Ltd.

Author-supplied keywords

  • Heat shock
  • mRNA splicing
  • snRNPs

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Ursula Bond

  • Tharappel C. James

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free