Dynamics of kinematic vortices in a mesoscopic superconducting loop

Citations of this article
Mendeley users who have this article in their library.
Get full text


Using the time-dependent Ginzburg-Landau formalism, we study the dynamic properties of a submicron superconducting loop in applied current and in presence of a perpendicular magnetic field. The resistive state of the sample is caused by the motion of kinematic vortex-antivortex pairs. Vortices and antivortices move in opposite directions to each other, perpendicularly to the applied drive, and the periodic creation and annihilation of such pairs results in periodic oscillations of the voltage across the sample. The dynamics of these kinematic pairs is strongly influenced by the applied magnetic field, which for high fields leads to the flow of just vortices. Kinematic vortices can be temporarily pinned inside the loop with observable trace in the voltage vs. time characteristics. ?? 2010 Elsevier B.V. All rights reserved.




Berdiyorov, G. R., Miloević, M. V., & Peeters, F. M. (2010). Dynamics of kinematic vortices in a mesoscopic superconducting loop. In Physica C: Superconductivity and its Applications (Vol. 470, pp. 946–948). https://doi.org/10.1016/j.physc.2010.02.028

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free