An efficient implicit Runge-Kutta method for second order systems

20Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We will consider the efficient implementation of a fourth order two stage implicit Runge-Kutta method to solve periodic second order initial value problems. To solve the resulting systems, we will use the factorization of the discretized operator. Such proposed factorization involves both complex and real arithmetic. The latter case is considered here. The resulting system will be efficient and small in size. It is one fourth the size of systems using normal implicit Runge-Kutta method. Numerical details and examples will also be presented to demonstrate the efficiency of the method. © 2005 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Attili, B. S., Furati, K., & Syam, M. I. (2006). An efficient implicit Runge-Kutta method for second order systems. Applied Mathematics and Computation, 178(2), 229–238. https://doi.org/10.1016/j.amc.2005.11.044

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free