Equivalent conditions for noncentral generalized Laplacianness and independence of matrix quadratic forms

0Citations
Citations of this article
0Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Let Y be an n × p multivariate normal random matrix with general covariance ΣYand W be a symmetric matrix. In the present article, the property that a matrix quadratic form Y′WY is distributed as a difference of two independent (noncentral) Wishart random matrices is called the (noncentral) generalized Laplacianness (GL). Then a set of algebraic results are obtained which will give the necessary and sufficient conditions for the (noncentral) GL of a matrix quadratic form. Further, two extensions of Cochran's theorem concerning the (noncentral) GL and independence of a family of matrix quadratic forms are developed. © 2010 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Hu, J. (2010). Equivalent conditions for noncentral generalized Laplacianness and independence of matrix quadratic forms. Linear Algebra and Its Applications, 433(4), 796–809. https://doi.org/10.1016/j.laa.2010.04.010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free