Error term in pointwise approximation of the curvature of a curve

2Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Let P be a polygonal line approximating a planar curve Γ, the discrete curvature kd(P) at a vertex P ∈ P is (usually) defined to be the quotient of the angle between the normals of the two segments with vertex P by the average length of these segments. In this article we give an explicit upper bound of the difference |k(P)-kd(P)| between the curvature k(P) at P of the curve and the discrete curvature in terms of the polygonal line's data, the supremums over Γ of the curvature function k and its derivative k′, and a new geometrical invariant, the return factor ΩΓ. One consequence of this upper bound is that it is not needed to know precisely which curve is passing through the vertices of the polygonal line P to have a pointwise information on its curvature. © 2010 Elsevier B.V.

Cite

CITATION STYLE

APA

Borrelli, V., & Orgeret, F. (2010). Error term in pointwise approximation of the curvature of a curve. Computer Aided Geometric Design, 27(7), 538–550. https://doi.org/10.1016/j.cagd.2010.06.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free