Evaluation of D(d,n)3 He reaction neutron source models for BNCT irradiation system design

0Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A mathematical method was developed to calculate the yield, energy spectrum and angular distribution of neutrons from D(d,n)3He (D-D) reaction in a thick deuterium-titanium target for incident deuterons in energies lower than 1.0MeV. The data of energy spectrum and angular distribution were applied to set up the neutron source model for the beam-shaping-assembly (BSA) design of Boron-Neutron-Capture-Therapy (BNCT) using MCNP-4C code. Three cases of D-D neutron source corresponding to incident deuteron energy of 1000, 400 and 150 keV were investigated. The neutron beam characteristics were compared with the model of a 2.45 MeV mono-energetic and isotropic neutron source using an example BSA designed for BNCT irradiation. The results show significant differences in the neutron beam characteristics, particularly the fast neutron component and fast neutron dose in air, between the non-isotropic neutron source model and the 2.5 MeV mono-energetic and isotropic neutron source model. © 2007 Shanghai Institute of Applied Physics.

Cite

CITATION STYLE

APA

Ze’en, Y., Peng, L., KOBAYASHI, T., & BENGUA, G. (2007). Evaluation of D(d,n)3 He reaction neutron source models for BNCT irradiation system design. Nuclear Science and Techniques/Hewuli, 18(6), 330–335. https://doi.org/10.1016/S1001-8042(08)60003-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free