Evolution of transcription-regulating proteins by enzyme recruitment: molecular models for nitrogen metabolite repression and ethanol utilisation in eukaryotes

  • Hawkins A
  • Lamb H
  • Radford A
 et al. 
  • 3


    Mendeley users who have this article in their library.
  • 9


    Citations of this article.


Studies on the quinic acid utilisation gene (qut) cluster in Aspergillus nidulans showed that the genes encoding transcriptional activator and repressor proteins evolved by co-opting duplicated copies of genes encoding metabolic enzymes. In order to test the hypothesis that this was a general route for the genesis of regulatory proteins, the origins of the major control protein mediating nitrogen metabolite repression (an example of inter-pathway regulation) and ethanol utilisation (an example of intra-pathway regulation) in filamentous fungi were sought. The regulatory proteins mediating nitrogen metabolite repression were deduced to have originated in a duplication of genes encoding the anthranilate synthase complex which is active in the shikimate pathway. The major protein regulating ethanol utilisation was deduced to have its origin in the fusion of duplicated genes encoding the aldehyde and alcohol dehydrogenases (ALDA and ALCA). These data strongly support the view that transcriptional regulatory proteins evolve by the recruitment of functional domains provided by metabolic enzymes. © 1994.

Author-supplied keywords

  • Aspergillus nidulans
  • Neurospora crassa
  • Shikimate pathway
  • filamentous fungi
  • quinate

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Alastair R. Hawkins

  • Heather K. Lamb

  • Alan Radford

  • Jonathan D. Moore

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free