Explicit calculation of the running coupling BFKL anomalous dimension

Citations of this article
Mendeley users who have this article in their library.
Get full text


I calculate the anomalous dimension governing the Q2evolution of the gluon (and structure functions) coming from the running coupling BFKL equation. This may be expressed in an exact analytic form, up to a small ultraviolet renormalon contribution, and hence the corresponding splitting function may be determined precisely. Rather surprisingly it is most efficient to expand the gluon distribution in powers of α(s)(Q2) rather than use the traditional expansion where all orders of α(s)ln(l/x) are kept on an equal footing. The anomalous dimension is very different from that obtained from the fixed coupling equation, and leads to a powerlike behaviour for the splitting function as x → 0 which is far weaker, i.e. ~ x-0.2. The NLO corrections to the anomalous dimension are rather small, unlike the fixed coupling case, and a stable perturbative expansion is obtained. (C) 2000 Published by Elsevier Science B.V.




Thorne, R. S. (2000). Explicit calculation of the running coupling BFKL anomalous dimension. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 474(3–4), 372–384. https://doi.org/10.1016/S0370-2693(00)00019-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free