Functionally fitted explicit pseudo two-step Runge-Kutta methods

  • Hoang N
  • Sidje R
  • 2


    Mendeley users who have this article in their library.
  • 2


    Citations of this article.


Explicit pseudo two-step Runge-Kutta (EPTRK) methods belong to the wider class of general linear multistep methods. The particularity of EPTRK methods is that they do not use the last two iterates as conventional two-step methods do. Rather, they predict the intermediate stage values and combine them with the last iterate to obtain the next iterate. EPTRK methods were initially designed to suit parallel computers, but they have been shown to achieve arbitrary high-order and thus can be useful as conventional explicit RK methods on sequential computers as well. Our contribution in this paper is to present a new family of functionally fitted EPTRK methods aimed at integrating an equation exactly if its solution is a linear combination of a chosen set of basis functions. We use a variation of collocation techniques to show that this new family, which we call FEPTRK, shares the same accuracy properties as EPTRK. The added advantage is that FEPTRK can use specific fitting functions to capitalize on the special properties of the problem that may be known in advance. © 2007 IMACS.

Author-supplied keywords

  • Collocation
  • Functionally fitted
  • Nonstiff ODEs
  • Two-step explicit RK
  • Variable coefficients

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Nguyen S. Hoang

  • Roger B. Sidje

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free