Hierarchical-likelihood approach for nonlinear mixed-effects models

  • Noh M
  • Lee Y
  • 4

    Readers

    Mendeley users who have this article in their library.
  • 6

    Citations

    Citations of this article.

Abstract

The restricted maximum likelihood (REML) procedure is useful for inferences about variance components in linear mixed models (LMMs). However, its extension to nonlinear mixed models (NLMMs) is often hampered by analytically intractable integrals. For NLMMs various estimation methods have been suggested, but they have suffered from unsatisfactory biases. In this paper we propose a statistically and computationally efficient REML procedure, based upon hierarchical likelihood. Numerical studies show that the proposed method reduces the biases in the existing methods that we studied. We also study how the current REML procedure for LMMs can be modified to compute the proposed estimators. © 2007 Elsevier Ltd. All rights reserved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Maengseok Noh

  • Youngjo Lee

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free