The interaction of ammonia with small iron clusters: Infrared spectra and density functional calculations of Fe(n)(NH3)(m) and Fe(n)(ND3)(m) complexes

  • Jackson K
  • Knickelbein M
  • Koretsky G
 et al. 
  • 5


    Mendeley users who have this article in their library.
  • 16


    Citations of this article.


Bare iron clusters react in the gas phase with ammonia to form Fe(n)(NH3)(m) complexes. In the present study, the iron cluster-ammonia interaction within Fe(n)(NH3)(m) and Fe(n)(ND3)(m) complexes (n = 7-16) are investigated by molecular beam infrared depletion spectroscopy and density functional theory (DFT) calculations. Experimentally, we observe an absorption band within Fe(n)(ND3)(m) complexes in the 880-890 cm-1range, which is attributed to the v2inversion mode of ND3. DFT calculations performed for Fe(n)(NH3)(m) and Fe(n)(ND3)(m) model complexes (n = 1, 4, 7, and 13) predict that three of the four vibrational fundamentals of ammonia are only slightly shifted from their gas phase values, but that the symmetric v2fundamental shifts substantially upward in the complex. For ND3, v2is predicted to shift from 748 cm-1to the 850-900 cm-1range when adsorbed to Fe(n), as is observed experimentally in both the present cluster study and in iron single-crystal surface studies. DFT calculations of vertical ionization potentials of Fe(n)/Fe(n)(NH3)(m) species and of Fe(n)-NH3binding energies are found to be in near-quantitative agreement with previously measured values.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Koblar A. Jackson

  • Mark Knickelbein

  • Geoffrey Koretsky

  • Sudha Srinivas

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free