An inverse problem of finding a parameter in a semi-linear heat equation

  • Cannon J
  • Lin Y
  • 5


    Mendeley users who have this article in their library.
  • 109


    Citations of this article.


We consider the following inverse problem of finding the pair (u, p) which satisfies the following: u1 = uxx + p(t)u + F(x, t, u, ux, p(t), 0 < x < 1, 0 < t ≤ T; u(x,0) = u0(x), 0 < x < 1, ux(0, t) = f(t), ux(1, t) = g(t), 0 < t ≤ T; and ∝01ψ(x,t) u(x, t)dx = E(t), 0 < t ≤ T; where u0, f, g, F, ψ, and E are known functions. The existence, uniqueness, regularity, and the continuous dependence of the solution upon the data are demonstrated. © 1990.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • J. R. Cannon

  • Yanping Lin

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free