Karyotypic evolution pathways in medulloblastoma/primitive neuroectodermal tumor determined with a combination of spectral karyotyping, G-banding, and fluorescence in situ hybridization

  • Cohen N
  • Betts D
  • Tavori U
 et al. 
  • 4

    Readers

    Mendeley users who have this article in their library.
  • 18

    Citations

    Citations of this article.

Abstract

Medulloblastomas (MBs) or primitive neuroectodermal tumors (PNETs) represent 15%-30% of pediatric brain tumors and are the most common brain tumors in children; they are rare in adults. Classification of these tumors is based on tissue morphology and is often controversial and problematic. Karyotypic analysis of these tumors using conventional cytogenetic methods is often a difficult process that may be hindered by a limited number of metaphase cells and poor chromosome morphology, often leading to only partial characterization of the chromosomal abnormalities. We investigated three primary human tumors and four cell lines (CHO-707, DAOY, D-341, and PFSK) utilizing a combination of conventional G-banding, spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH) techniques. A high level of intratumoral heterogeneity was seen, with multiple numerical and structural chromosomal aberrations. The chromosomes most frequently involved in structural aberrations were chromosomes 1 (14 rearrangements), 7 (9 rearrangements), and 21 (9 rearrangements). The chromosomes most frequently involved in numerical aberrations were chromosomes 1, 12, and 13 (four cases) and chromosomes 14, 17, 19, 21, 22, and X (three cases). Numerous aberrant chromosomes were characterized only with the SKY analysis, and based on these findings multiple clones were identified, facilitating analysis of karyotypic evolution. The most frequent evolution mechanism was via polyploidization, followed by acquisition of additional numerical or structural aberrations (or both); however, the results showed that the karyotypic evolution process in these tumors is typically divergent and complex. © 2004 Elsevier Inc. All rights reserved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Ninette Cohen

  • David R. Betts

  • Uri Tavori

  • Amos Toren

  • Tzvi Ram

  • Shlomi Constantini

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free