The limit of the partial sums process of spatial least squares residuals

8Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We establish a functional central limit theorem for a sequence of least squares residuals of spatial data from a linear regression model. Under mild assumptions on the model we explicitly determine the limit process in the case where the assumed linear model is true. Moreover, in the case where the assumed linear model is not true we explicitly establish the limit process for the localized true regression function under mild conditions. These results can be used to develop non-parametric model checks for linear regression. Our proofs generalize ideas of a univariate geometrical approach due to Bischoff [W. Bischoff, The structure of residual partial sums limit processes of linear regression models, Theory Stoch. Process. 8 (24) (2002) 23-28] which is different to that proposed by MacNeill and Jandhyala [I.B. MacNeill, V.K. Jandhyala, Change-point methods for spatial data, in: G.P. Patil, et al. (Eds.), Multivariate Environmental Statistics. Papers Presented at the 7th International Conference on Multivariate Analysis held at Pennsylvania State University, University Park, PA, USA, May 5-9 1992, in: Ser. Stat. Probab., vol. 6, North-Holland, Amsterdam, 1993, pp. 289-306 (in English)]. Moreover, Xie and MacNeill [L. Xie, I.B. MacNeill, Spatial residual processes and boundary detection, South African Statist. J. 40 (1) (2006) 33-53] established the limit process of set indexed partial sums of regression residuals. In our framework we get that result as an immediate consequence of a result of Alexander and Pyke [K.S. Alexander, R. Pyke, A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab. 14 (1986) 582-597]. The reason for that is that by our geometrical approach we recognize the structure of the limit process: it is a projection of the Brownian sheet onto a certain subspace of the reproducing kernel Hilbert space of the Brownian sheet. Several examples are discussed. © 2009 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Bischoff, W., & Somayasa, W. (2009). The limit of the partial sums process of spatial least squares residuals. Journal of Multivariate Analysis, 100(10), 2167–2177. https://doi.org/10.1016/j.jmva.2009.04.005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free