Luminescence in porous silicon: The role of confinement and passivation

  • Ossicini S
  • Dorigoni L
  • Bisi O
  • 4

    Readers

    Mendeley users who have this article in their library.
  • 12

    Citations

    Citations of this article.

Abstract

We perform the theoretical analysis of two wires of different size, simulating porous Si, through the linear muffin tin orbitals method in the atomic sphere approximation. We consider free, partially and totally H-covered [001] Si quantum wires with rectangular cross section. We show that (a) quantum confinement originates the opening of the LDA gap; (b) this opening is asymmetric: 1/3 of the widening is in the valence band, while 2/3 in the conduction band; (c) the near band gap states originate from Si atoms located at the center of the wire; (d) the confinement is enhanced in the case of free surfaces; (e) the imaginary part of the dielectric function shows a low energy side structure strongly anisotropic, identified as responsible of the luminescence transition; (f) the presence of dangling bonds destroys the luminescent properties.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free