Mechanistic investigation of SN2 dominated gas phase alkyl iodide reactions

Citations of this article
Mendeley users who have this article in their library.
Get full text


The competition between substitution (SN2) and elimination (E2) has been studied for the reactions of methyl, ethyl, isopropyl, and tert-butyl iodide with Cl-, CN-, and HS-in the gas phase. Previous studies have shown a dominance of the SN2 mechanism for sulfur anions and for some cyanide-alkyl iodide reactions. Although our results support this conclusion for the reactions studied, they reveal that competition between the SN2 and E2 pathways exists for the isopropyl reactions. Steric and electronic effects, upon alkyl group substitution, produce looser and less stable SN2 transition states, however, they can favor the E2 process. These opposing effects on barrier heights produce E2/SN2 competition as steric hindrance increases around the α-carbon, however the relative differences in intrinsic barrier heights lead to significantly different branching ratios. This interpretation is discussed in terms of reaction efficiencies, kinetic isotope effects, linear basicity-reactivity relationships, electrostatic models, and transition state looseness parameters.




Garver, J. M., Eyet, N., Villano, S. M., Yang, Z., & Bierbaum, V. M. (2011). Mechanistic investigation of SN2 dominated gas phase alkyl iodide reactions. In International Journal of Mass Spectrometry (Vol. 301, pp. 151–158).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free