Modular transformation and boundary states in logarithmic conformal field theory

  • Kawai S
  • Wheater J
  • 5


    Mendeley users who have this article in their library.
  • 37


    Citations of this article.


We study the c = -2 model of logarithmic conformal field theory in the presence of a boundary using symplectic fermions. We find boundary states with consistent modular properties. A peculiar feature of this model is that the vacuum representation corresponding to the identity operator is a sub-representation of a "reducible but indecomposable" larger representation. This leads to unusual properties, such as the failure of the Verlinde formula. Despite such complexities in the structure of modules, our results suggest that logarithmic conformal field theories admit bona fide boundary states. © 2001 Published by Elsevier Science B.V.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Shinsuke Kawai

  • John F. Wheater

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free