Monte Carlo simulations of Si(001) growth and reconstruction during molecular beam epitaxy

  • Barnett S
  • Rockett A
  • 5


    Mendeley users who have this article in their library.
  • 70


    Citations of this article.


A Monte Carlo simulation of Si(001) crystal growth and surface reconstruction during molecular beam epitaxy is described. The simulation is based on the solid-on-solid model and depicts the diamond lattice and surface reconstructions explicitly. Si deposition, surface diffusion, and the formation and reorientation of surface dimer pairs are accounted for. The results indicate that surface dimer formation plays an important role in determining the crystal growth kinetics, which is observed to be a combination of step propagation and two-dimensional island nucleation modes. At least 5 diffusion events per deposited atom and second nearest neighbor interaction energies E2≳ kT were required to yield films with mean-square surface roughnesses of ≲ 0.7 monolayer. Decreasing either the diffusion rate or E2yielded increasingly rough surfaces. Ordered (2 × 1) rows of dimer pairs were observed when a term accounting for the subsurface strain energy interaction between dimers was included. First-order reflected electron intensity calculations for the simulated surfaces showed strong intensity oscillations with a period of 1 monolayer. © 1988.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free