Neurocontrol of nonlinear systems via local memory neurons

Citations of this article
Mendeley users who have this article in their library.
Get full text


In this report, we consider the part of our work which concerns the approximation of nonlinear dynamic systems using neural networks. Based on a new paradigm of neurons with local memory (NNLM), we discuss the representation of control systems by neural networks. Using this formulation, the basic issues of controllability and observability for the dynamic system are addressed. A separation principle of learning and control is presented for NNLM, showing that the weights of the network do not affect its dynamics. Theoretical issues concerning local linearization via a coordinate transformation and nonlinear feedback are discussed. For illustration of the approach simulation results for no nonlinear control of an aircraft encountering wind shear on take-off is presented.




Amin, S. M., Rodin, E. Y., & Wu, A. Y. (1998). Neurocontrol of nonlinear systems via local memory neurons. Mathematical and Computer Modelling, 27(3), 65–92.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free