A new kind of representations on noncommutative phase space

Citations of this article
Mendeley users who have this article in their library.
Get full text


We introduce new representations to formulate quantum mechanics on noncommutative phase space, in which both coordinate-coordinate and momentum-momentum are noncommutative. These representations explicitly display entanglement properties between degrees of freedom of different coordinate and momentum components. To show their potential applications, we derive explicit expressions of Wigner function and Wigner operator in the new representations, as well as solve exactly a two-dimensional harmonic oscillator on the noncommutative phase plane with both kinetic coupling and elastic coupling. © 2008 Elsevier B.V. All rights reserved.




Jing, S., & Lin, B. (2008). A new kind of representations on noncommutative phase space. Physics Letters, Section A: General, Atomic and Solid State Physics, 372(48), 7109–7116. https://doi.org/10.1016/j.physleta.2008.10.052

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free