Oxide thickness dependence of plasma charging damage

  • Lin H
  • Chen C
  • Wang M
 et al. 
  • 4

    Readers

    Mendeley users who have this article in their library.
  • 1

    Citations

    Citations of this article.

Abstract

Charging damage induced in oxides with thickness ranging from 8.7 to 2.5 nm is investigated. Results of charge-to-breakdown (Qbd) measurements performed on control devices indicate that the polarity dependence increases with decreasing oxide thickness at both room and elevated temperature (180 °C) conditions. As the oxide thickness is thinned down below 3 nm, the Qbdbecomes very sensitive to the stressing current density and temperature. Experimental results show that severe antenna effect would occur during plasma ashing treatment in devices with gate oxides as thin as 2.6 nm. It is concluded that high stressing current level, negative plasma charging, and high process temperature are key factors responsible for the damage.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free