Perturbation theory and the Rayleigh quotient

Citations of this article
Mendeley users who have this article in their library.
Get full text


The characteristic frequencies ω of the vibrations of an elastic solid subject to boundary conditions of either zero displacement or zero traction are given by the Rayleigh quotient expressed in terms of the corresponding exact eigenfunctions. In problems that can be analytically expanded in a small parameter ε, it is shown that when an approximate eigenfunction is known with an error O(εN), the Rayleigh quotient gives the frequency with an error O(ε2N), a gain of N orders. This result generalizes a well-known theorem for N=1. A non-trivial example is presented for N=4, whereby knowledge of the 3rd-order eigenfunction (error being 4th order) gives the eigenvalue with an error that is 8th order; the 6th-order term thus determined provides an unambiguous derivation of the shear coefficient in Timoshenko beam theory. © 2010 Elsevier Ltd. All rights reserved.




Chan, K. T., Stephen, N. G., & Young, K. (2011). Perturbation theory and the Rayleigh quotient. Journal of Sound and Vibration, 330(9), 2073–2078.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free