Potential flow in a semi-infinite channel with multiple sub-channels using the Schwarz-Christoffel transformation

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper we consider the potential fluid flow in a semi-infinite channel with multiple semi-infinite sub-channels using the Schwarz-Christoffel transformation and complex potential theory. The Schwarz-Christoffel transformation contains several unknown parameters, which are solely dependent on the dimensions of the region being considered, and an alternative iterative mathematical technique to that found elsewhere in the literature is developed to determine these parameters using a Runge-Kutta-Merson method of integration. Once these parameters have been determined we numerically integrate the Schwarz-Christoffel transformation using a variable-step Adams method. Now the mapping from the region being considered to the upper half of the complex plane is complete. In order to illustrate this mathematical technique we consider a semi-infinite room with an inlet/outlet placed on the ceiling and an outlet attached to the wall. The inlet and outlet channesl are normal to the surface to which they are attached and through each of these channels we have uniform flow at infinity. Hence the whole region is modelled by a semi-infinite channel with two sub-channels attached. (C) 2000 Elsevier Science S.A. All rights reserved.

Cite

CITATION STYLE

APA

Trevelyan, P. M. J., Elliott, L., & Ingham, D. B. (2000). Potential flow in a semi-infinite channel with multiple sub-channels using the Schwarz-Christoffel transformation. Computer Methods in Applied Mechanics and Engineering, 189(1), 341–359. https://doi.org/10.1016/S0045-7825(99)00299-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free