Régularité anisotrope pour le Laplacien et l'opérateur de Maxwell dans un polyèdre

14Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

As representatives of a larger class of elliptic boundary value problems of mathematical physics, we study the Dirichlet problem for the Laplace operator and the electric boundary problem for the Maxwell operator. We state regularity results in two families of weighted Sobolev spaces: A classical isotropic family, and a new anisotropic family, where the hypoellipticity along an edge of a polyhedral domain is taken into account. © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Cite

CITATION STYLE

APA

Buffa, A., Costabel, M., & Dauge, M. (2003). Régularité anisotrope pour le Laplacien et l’opérateur de Maxwell dans un polyèdre. Comptes Rendus Mathematique, 336(7), 565–570. https://doi.org/10.1016/S1631-073X(03)00138-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free