The role of ergodicity and mixing in the central limit theorem for Casati-Prosen triangle map variables

  • Queirós S
  • 3

    Readers

    Mendeley users who have this article in their library.
  • 4

    Citations

    Citations of this article.

Abstract

In this Letter we analyse the behaviour of the probability density function of the sum of N deterministic variables generated from the triangle map of Casati-Prosen. For the case in which the map is both ergodic and mixing the resulting probability density function quickly concurs with the Normal distribution. However, when the map is weakly chaotic, and fuzzily not mixing, the resulting probability density functions are described by power-laws. Moreover, contrarily to what it would be expected, as the number of added variables N increases the distance to Gaussian distribution increases. This behaviour goes against standard central limit theorem. By extrapolation of our finite size results we preview that in the limit of N going to infinity the distribution has the same asymptotic decay as a Lorentzian (or a q = 2-Gaussian). © 2009 Elsevier B.V. All rights reserved.

Author-supplied keywords

  • Central limit theorem
  • Conservative maps
  • Dynamical systems

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • S. M.Duarte Queirós

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free