Rotfel'd type inequalities for norms

Citations of this article
Mendeley users who have this article in their library.
Get full text


In this note, we consider some norm inequalities related to the Rotfel'd Trace InequalityTr f (| A + B |) ≤ Tr f (| A |) + f (| B |)for concave functions f : [0, ∞) → [0, ∞) and arbitrary n-by-n matrices. For instance we show that for a large class of non-negative concave functions f (t) and for all symmetric norms we have{norm of matrix} f (| A + B |) {norm of matrix} ≤ sqrt(2) {norm of matrix} f (| A |) + f (| B |) {norm of matrix}and we conjecture that this holds for all non-negative concave functions. © 2010 Elsevier Inc. All rights reserved.




Lee, E. Y. (2010). Rotfel’d type inequalities for norms. Linear Algebra and Its Applications, 433(3), 580–584.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free