Citations of this article
Mendeley users who have this article in their library.
Get full text


The implementation of quadratic velocity, linear pressure finite element approximation methods for the steady-state incompressible (Navier-)Stokes equations is addressed in this work. Three types of a posteriori error indicator are introduced and are shown to give global error estimates that are equivalent to the true discretisation error. Computational results suggest that the solution of local Poisson problems provides a cost-effective error estimation strategy, both from the perspective of accurate estimation of the global error and for the purpose of selecting elements for refinement within a contemporary self-adaptive refinement algorithm. © 2010 IMACS.




Liao, Q., & Silvester, D. (2012). A simple yet effective a posteriori estimator for classical mixed approximation of Stokes equations. In Applied Numerical Mathematics (Vol. 62, pp. 1242–1256). https://doi.org/10.1016/j.apnum.2010.05.003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free